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Abstract. Several factors may interact to determine the periodicity of ocular dominance stripes
in cat and monkey visual cortex. Previous theoretical work has suggested roles for the width of
cortical interactions and the strength of between-eye correlations. Here, a model based on an
explicit optimization is presented that allows a thorough characterization of how these and other
parameters of the afferent input could affect ocular dominance stripe periodicity. The principle
conclusions are that increasing the width of within-eye correlations leads to wider columns, and,
surprisingly, that increasing the width of cortical interactions can sometimes lead to narrower
columns.

1. Introduction

In cats, monkeys and humans, layer 4 of the primary visual cortex (V1) is divided up into
alternating regions dominated by input from the left and right eyes (e.g. Hubel and Wiesel
1977). These regions segregate from a spatially uniform pattern during development (Rakic
1976, LeVayet al 1978). A characteristic feature of the segregated pattern is its strongly
regular periodicity. Which biological variables determine this periodicity?

Recent experimental data suggest a role for the correlational structure of neural activity.
Löwel (1994) showed that kittens raised with divergent strabismus have wider ocular
dominance stripes than normal kittens. Comparison of the patterns of ocular dominance
stripes in normal squirrel monkeys seen by Horton and Hocking (1996a) with those in
strabismic squirrel monkeys seen by Livingstone (1996) reveals substantially wider stripes
in the strabismic case. Tieman and Tumosa (1997) compared the periodicity of ocular
dominance stripes in kittens raised with alternating monocular exposure (AME) with normal
kittens, and found that the AME group had wider stripes, though to a lesser degree than in
the strabismic case. The crucial parameter that is altered in all these cases is that the strong
correlations normally present between activity in the two eyes are reduced. This effect of
between-eye correlations on stripe periodicity was first explicitly predicted for the strabismic
case by Goodhill (1993) (see also Goodhill and Löwel 1995), though it was also implicit
in the elastic net model of Goodhill and Willshaw (1990), and has since been observed in
several other models (e.g. Sirosh and Miikkulainen 1997). Recent preliminary data have
also suggested an influence on stripe periodicity of the spatial extent of lateral connections
in the cortex (Hensch and Stryker 1996). Such an effect was previously observed in many
models, for instance those of Swindale (1980), Milleret al (1989), Goodhill (1993), and

† E-mail: geoff@giccs.georgetown.edu

0954-898X/98/030419+14$19.50c© 1998 IOP Publishing Ltd 419



420 G J Goodhill

the elastic net (Dayan 1993). For comprehensive reviews of models, see Erwinet al (1995)
and Swindale (1996).

Despite this apparently good match between theoretical models and experimental
findings, a more extensive theoretical investigation of the ways in which correlated activity
could combine with intracortical connections to determine stripe periodicity has not been
performed. One problem with attempting a thorough characterization of the parameter space
is that in so-called high-dimensional models, such as Milleret al (1989) and Goodhill (1993),
segregation is often quite sensitive to the parameters. For instance, as shown by Baueret al
(1997), there are combinations of between-eye correlation strengths and cortical interaction
widths for which segregation fails in a model like that of Goodhill (1993), and thus the
periodicity that would result in this case cannot be determined (see also Dayan and Goodhill
1992). By contrast, in so-called low-dimensional or feature space models, such as those
of Goodhill and Willshaw (1990) and Obermayeret al (1992), segregation is more or less
guaranteed. A different problem, however, arises: these models do not allow arbitrary
variations in the correlational structure of the inputs. The only degree of freedom is the
position of feature points, and so, for instance, the spatial extent of within-eye correlations
cannot be altered independently of the spatial extent of different-eye correlations (for further
discussion see Goodhillet al 1996).

An alternative approach which avoids these problems, though limited in other ways to
be described, is one based on a more abstract optimization principle. A qualitative argument
in the experimental literature, formalized by Joneset al (1991), has been that the ocular
dominance map is an attempt to optimally trade off competing desires: for neighbouring
points within each eye to be represented nearby in the cortex, and for corresponding points
between the two eyes to also be represented nearby in the cortex. Since the most correlated
inputs are expected to be neighbouring points in one eye and corresponding points between
the two eyes, this argument can be expressed more generally in the terms that highly
correlated inputs should be represented close together. However, with rare exceptions such
as the model of Joneset al (1991), which was concerned with the overall map and took
stripe periodicity to be fixed, an explicit optimization of an objective function measuring
this trade-off has not been theoretically explored. This is understandable: such a model
puts forward no mechanism to explain how the optimization is performed biologically,
it addresses only the outcome of the segregation process rather than the dynamics of
segregation itself, and such an optimization presents a severe computational challenge. The
tendency in the theoretical literature has rather been to investigate biologically motivated
mechanisms that are more computationally tractable. However, this is at the expense of
the limitations described above, and leaves open many questions regarding how certain
parameters interact to determine ocular dominance stripe periodicity.

In this paper a one-dimensional optimization model is used to thoroughly characterize
the effects of four parameters on ocular dominance stripe periodicity. These are: the
spatial extent of within-eye correlations, the spatial extent of between-eye correlations,
the strength of between-eye correlations relative to within-eye correlations, and the spatial
extent of lateral interactions in the cortex. Effects of some of these parameters alone have
been explored in particular models as discussed above. The present complete investigation
of this four-dimensional parameter space in an optimization framework reproduces some
of these results. However, it also reveals that there are parameter regimes where
surprising effects can occur: for instance, domains whereincreasing the extent of lateral
connectionsdecreasesthe width of stripes. This characterization also leads to specific novel
predictions regarding the outcome of particular rearing paradigms on ocular dominance
stripe periodicity. In particular, the model predicts that dark-reared, binocularly deprived
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and strabismically-reared kittens should all have slightly different ocular dominance stripe
periodicities, due to the different spatial statistics of retinal activity that each of these rearing
paradigms entail.

2. Optimization model

2.1. Objective function

The objective function optimized is theC measure introduced by Goodhillet al (1995) (see
also Goodhill and Sejnowski (1996, 1997)). This is defined as follows:

C =
N∑
i=1

∑
j<i

F (i, j)G(M(i),M(j)) (1)

where i and j label points in the input space of retinal points (N in total), andM is the
mapping to the cortex so thatM(i) andM(j) label the cortical cells which represent input
points i and j respectively. F(i, j) gives the similarity between pointsi and j in the
input space, andG(M(i),M(j)) gives the similarity between the representations of those
features in the cortex. It can be shown that, if a perfectly topographic mapping from the
input space to the output space exists, then maximizingC will find it (Goodhill et al 1995).
TheC measure provides a way to unify several different approaches to topography, which
can then all be interpreted in this common framework simply as different choices of the
F andG functions. Approaches falling in this class (see Goodhill and Sejnowski (1996,
1997) for further details) include the elastic net, Kohonen’s (1982) self-organizing map
(via the quasi-objective function for this algorithm introduced by Luttrell (1990, 1994)),
the generalization of Luttrell’s objective function proposed by Mitchison (1995), the model
of Miller et al (1989) (see section 5), metric multidimensional scaling (Torgerson 1952),
minimal wiring (Durbin and Mitchison 1990), and dynamic link matching (Bienenstock and
von der Malsburg 1987a, b). TheC measure is thus an appropriately general function to
optimize here.

In the present context,F gives the form of the correlations within and between eyes.
Following Miller et al (1989), the within-eye correlation is assumed to be

F(i, j) = e−d
2
ij /σ

2
S

where the subscriptS refers to ‘same eye’. In the one-dimensional casedij is assumed to
be i − j , i.e. retinal points are assumed to be evenly spaced, unit distance apart. Left and
right eye correlations are taken to be identical. Again following Milleret al (1989), the
between-eye correlation is assumed to be

F(i, j) = MDe−d
2
ij /σ

2
D

where 06 MD < 1 is the magnitude of between-eye correlations relative to same-eye
correlations (D refers to ‘different eye’).i andj now label points in different eyes, anddij
is the distance from pointj to the point corresponding toi. G is like the neighbourhood
function in Kohonen’s self-organizing map, and is related to the end result of the iterative
application of a kernel of short-range excitation and global inhibition in this patch of cortex
to yield a single activity bubble (Wiskott and Sejnowski 1998). In the model this has the
form

G(i, j) = e−d
2
ij /σ

2
C

wheredij = i− j and the subscriptC refers to ‘cortex’. The above notation is summarized
in table 1.
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Table 1. Notation for the optimization model.

Parameter Meaning

F(i, j) Correlation between retinal pointsi andj
G(i, j) Similarity between cortical pointsi andj
MD Ratio of strength of between- to same-eye correlations
σS Spatial scale of same-eye correlations
σD Spatial scale of between-eye correlations
σC Spatial scale of cortical similarity
N Number of retinal points (equals number of cortical points)

2.2. Performing the optimization

A total of 24 points are considered, 12 in each eye. There are thus of the order of 24!≈ 1023

possible mappings in total. Optimization by exhaustive search is impractical, and instead
the heuristic technique of simulated annealing was used (Kirkpatricket al 1983). This
performs gradient descent/ascent in an objective function, but allows occasional steps in
the wrong direction so that the solution is less likely to get stuck in a local optimum.
The probability of taking a step in the wrong direction is controlled by a ‘temperature’
parameter that is gradually reduced. The parameters used were as follows (van Laarhoven
and Aarts 1987). The initial map from retinal to cortical points was random, and the initial
temperature was three times the average difference in cost between random maps. At each
step, a candidate move consisted of interchanging a random pair of points in the map.
This move was accepted with 100% probability if it improved the value of the objective
function, or with a probability determined by the temperature if it did not. Once the sooner
of 24 000 candidate moves had been generated or 2400 moves accepted, the temperature
was multiplied by 0.998. The procedure was terminated when no moves were accepted
out of 24 000 candidates at the same temperature. In each case the best of five runs was
chosen from different starting conditions. Using these parameters, the results in table 2 took
approximately 30 hours to generate on a 195 MHz SGI Octane workstation, i.e. each case
took about 3 minutes.

3. Results

The parameter values investigated were{σS, σD, σC} = {1.0, 2.0, 3.0}, and MD =
{0.0, 0.2, 0.4, 0.6, 0.8}, a total of 135 cases in all. Results are shown in table 2. In many
cases the optimal map is the complete segregation of the two eyes into two adjacent regions.
Sometimes these are traversed in the same direction (this will be referred to as aZ map),
sometimes in opposite directions (referred to as aA map). For striped solutions, the
following general trends can be seen (note that in each case a change in the parameter can
also leave stripe width unchanged):

(i) IncreasingσS increases stripe width.
(ii) IncreasingσD decreases stripe width.
(iii) IncreasingMD decreases stripe width.
(iv) IncreasingσC decreases stripe width

An exception to trends (iii) and (iv) occurs in row 6. Here increasingMD increases
stripe width, and increasingσC (through rows 4–6)increasesstripe width. Both these
exceptions would disappear if the last two maps in row 6 were of width 1 rather than 2.
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Table 2. One-dimensional maps produced by the optimization procedure for all parameter
combinations.σS = spatial scale of same-eye correlations,σD = spatial scale of between-eye
correlations,σC = spatial scale of intracortical interactions,MD = relative strength of between-
eye correlations. ‘Row’ is an arbitrary label to facilitate indexing into the table. Note that the
aspect ratio of the pictures is arbitrary, and does not represent a parameter of the model.

Row �S �D �C MD = 0.0 MD = 0.2 MD = 0.4 MD = 0.6 MD = 0.8

1 1.0 1.0 1.0

2 1.0 1.0 2.0

3 1.0 1.0 3.0

4 1.0 2.0 1.0

5 1.0 2.0 2.0

6 1.0 2.0 3.0

7 1.0 3.0 1.0

8 1.0 3.0 2.0

9 1.0 3.0 3.0

10 2.0 1.0 1.0

11 2.0 1.0 2.0

12 2.0 1.0 3.0

13 2.0 2.0 1.0

14 2.0 2.0 2.0

15 2.0 2.0 3.0

16 2.0 3.0 1.0

17 2.0 3.0 2.0

18 2.0 3.0 3.0

19 3.0 1.0 1.0

20 3.0 1.0 2.0

21 3.0 1.0 3.0

22 3.0 2.0 1.0

23 3.0 2.0 2.0

24 3.0 2.0 3.0

25 3.0 3.0 1.0

26 3.0 3.0 2.0

27 3.0 3.0 3.0

These two cases were therefore re-run using a much slower annealing schedule than would
have been practical for the whole 135 cases, to test for the possibility that these represent
local rather than global minima. However, the result remained unchanged.
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Figure 1. Variation in the value ofC over the set of fixed maps for row 5 of table 2 (σS = 1.0,
σD = 2.0, σC = 2.0). Note that the vertical scales are different in each graph, since values of
C are not comparable between different sets of parameters.

In order to test whether the map found in each case was at least the optimal striped
mapping, the best values ofC found in each case were compared with the value ofC

calculated for nine fixed maps of increasing stripe width, numbered as follows. 1: width 1
(e.g. row 3,MD = 0.2 in table 2). 2: width ‘1.5’ (row 12,MD = 0.6). 3: width 2 (row 1,
MD = 0.4). 4: width ‘2.5’ (row 5,MD = 0.2). 5: width 3 (not seen in table 2). 6: width
4 (row 14,MD = 0.6). 7: width ‘4.5’ (row 27,MD = 0.6). 8: width 6 (not seen in table
2). 9: theA map. Figure 1 shows some examples of how the value ofC varies over this
set of fixed maps for row 5 of the table. In every case except two in the table, the fixed
maps were never better than the result found by the optimization. The two exceptions are
row 15 withMD = 0.4, and row 23 withMD = 0.8: in both cases the map of formA is
slightly better.

The general trends displayed in table 2 can be qualitatively understood as follows. AsσS
increases, points which are increasingly widely separated within an eye become significantly
correlated. One would therefore expect longer stretches of cortex which represent the same
eye, i.e. wider stripes. AsMD or σD increase, the overall degree of correlation between
the two eyes increases, and one would expect an increasing desire to keep corresponding
and close-to-corresponding points within the eyes close together in the cortex, i.e. narrower
stripes. AsσC increases, on the one hand one would expect a wider interaction in the cortex
to lead to wider stripes (as observed in many other models). On the other hand, however,
if the two eyes are correlated then a wider cortical interaction makes it favourable to bring
together in the cortex close-to-corresponding points in the two eyes, whereas this might not
have been favourable before, thus leading to narrower stripes. It is interesting that the usual
behaviour in the table is that increasingσC leads to narrower stripes, opposite to the trend
commonly observed in models.
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An important question is the degree to which these one-dimensional periodicity results
scale up to two dimensions, as in other algorithms such as the elastic net (Goodhill
and Willshaw 1990, Goodhill 1992). Two-dimensional simulations were therefore also
performed for the parameters of row 14 in table 2 (as an example of a case with three
well-defined periodicities). Two retinae of size 6× 6 (72 points in all) mapped to a cortex
of size 12× 6. Simulated annealing parameters were as before, except that the maximum
number of candidate moves was 72 000, the acceptance limit was 7200 moves, and only one
run was performed for each set of parameters (each case took several hours to run). Note
that there are now more than 10100 possible states, compared to 1023 in the one-dimensional
case. Results are shown in table 3. Stripes run parallel to the short axis of the cortex, as
expected (Joneset al 1991), and the periodicity of the one-dimensional case is generally
reproduced. An exception is forMD = 0.4, where the map seen in row 15 of table 2 occurs
instead of the map in row 14.

Table 3. Two-dimensional results for the parameters of row 14 of table 2. Two retinae of size
6× 6 mapped to a cortex of size 12× 6. The periodicities of the one-dimensional case are
generally reproduced.
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4. Analysis

In order to help understand the trends seen in table 2, it is useful to consider a simpler case
that can be explicitly analysed. For extremely short-range cortical interactions similarity in
the cortex is effectively only nearest neighbour, and it is approximately true thatG(i, j) = 1
if i andj are neighbours and 0 otherwise. This is roughly the case whenσC = 1.0, which
applies to rows 1, 4, 7, 10, 13, 16 19, 22 and 25 in table 2. Now analytical formulae
for the value ofC as a function of the three remaining parametersσS , σD andMD can
straightforwardly be derived and compared. The analytical results well predict the simulation
results, giving intuitive insight into how the parameters interact in the optimization.

First consider theA mapping. The value ofC of this map,CA, is

CA = (N − 2)e−1/σ 2
S +MD (2)

(since there areN − 1 segments in each eye whereG(i, j) = 1 andF(i, j) = e−1/σ 2
S , and

one ‘crossover’ segment whereG(i, j) = 1 andF(i, j) = MDe−0/σ 2
D ). The value ofC for
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theZ map,CZ, is

CZ = (N − 2)e−1/σ 2
S +MDe−(N/2−1)2/σ 2

D . (3)

For N = 24 the second term of the right-hand side of equation (3) is effectively zero, and
thusCA > CZ in all cases except whenMD = 0, when they are equal. From table 2 it can
be seen that the two maps occur with about equal frequency whenMD = 0, but that theZ
map is never seen whenMD > 0, as expected.

Consider now the set of striped mappings and refer to theirC-values asCs(n), where
s indicates that the mapping is striped andn indicates the stripe width. The following
expressions can be derived:

Cs(1) = N

2
MD +

(
N

2
− 1

)
MDe−1/σ 2

D (4)

Cs(2) = N

2
MD +

(
N

2
− 1

)
e−1/σ 2

S . (5)

The general expression forn > 2 is

Cs(n) = N

2

[
2

(
1− 1

n

)
e−1/σ 2

S + MD

n

(
e−f (n)/σ

2
D + e−g(n)/σ

2
D

)]
(6)

where

f (n) = g(n) =
(
n− 2

2

)2

for n even

f (n) =
(
n− 1

2

)2

g(n) =
(
n− 3

2

)2

for n odd.

When is a striped map better than theA map? Consider stripes of width 2 (the reason for
this will become apparent shortly).Cs(2) > CA whenMD > e−1/σ 2

S , and thusσS = 1.0
requiresMD > 0.37. This expectation is confirmed in rows 1, 4 and 7 of table 2, where
theA map is preferred forMD 6 0.2, but a striped map is preferred forMD > 0.4.

When is the map of stripes of width 1 better than the map with stripes of width 2?
Cs(1) > Cs(2) when

MD > e(1/σ
2
D−1/σ 2

S ).

SinceMD < 1, the above inequality can never hold, and thus stripes of width 1 are never
favoured, whenσS > σD. This expectation is confirmed in table 2. For the case ofσS = 1.0,
σD = 2.0, the inequality requires thatMD > 0.47. This expectation is confirmed in row
4 of table 2, where width 2 is optimal forMD = 0.4, but width 1 is then preferred for
MD = 0.6 andMD = 0.8. For the case ofσS = 1.0, σD = 3.0, the inequality requires
thatMD > 0.41. This expectation is again confirmed, in row 7. For the case ofσS = 2.0,
σD = 3.0 (row 16), the inequality requires thatMD > 0.87. As expected, stripes of width
1 are no longer seen.

When are stripes of greater width local maxima ofC? Setting dCs(n)/dn = 0 does
not yield analytically tractable expressions. However, more direct methods can be used:
there is a local maximum atn if Cs(n − 1) < Cs(n) > Cs(n + 1). Using equation (6),
conditions can be derived onMD for this to be true. Forn odd, we obtain the condition
M1
D < MD < M2

D whereM1
D = M2

D; that is, there are no local maxima at odd values of
n 6= 1. Forn even, we also obtainM1

D < MD < M2
D where now

M1
D =

2e−1/σ 2
S

ne−[(n−4)/2σD ]2 − (n− 2)e−[(n−2)/2σD ]2

M2
D(n) = M1

D(n+ 2).
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AsMD decreases, maxima for larger values ofn become apparent, though the range ofMD

for which they exist becomes small. Note however that a completely segregated map is
always the global maximum, except whenMD > e−1/σ 2

S , whenn = 2 or n = 1 are globally
optimal as noted above. Thus asMD decreasesn = 2 first becomes a local optimum,
then the position of the local optimum shifts to largern. It is apparent from the table that
broader stripes can be optimal forσC > 1.0. Unfortunately the above analysis cannot easily
be extended to the case of broader cortical interactions, since now eachCs(n) contains
many more terms and cannot be so conveniently analytically compared.

5. Discussion

5.1. Effectiveness of the optimization procedure

Since a heuristic rather than exact optimization procedure was used, it cannot be ruled
out that some of the results in table 2 (in addition to the two exceptions already noted)
might represent local rather than global optima of the objective function. However, there
are at least four reasons to have confidence that at least many of the other entries are
indeed global optima. Firstly, as shown in section 4 above, the simulation results exactly
match those expected from direct calculations when these are applicable. Secondly, similar
optimization parameters were found to produce optimal or close to optimal solutions for
related problems where the optimal solution was explicitly known (Goodhill and Sejnowski
1996, 1997). Thirdly, a closer investigation of some particular cases (row 6 as described
above) revealed no changes in the solution using substantially more generous annealing
parameters. Fourth, fixed maps of a range of periodicities were never found to improve on
the solution found by optimization, except for the two cases already noted.

5.2. Relation to other models

One intention of the present work is to reveal which aspects of the behaviour of other
models can be simply understood by an optimization argument, and which aspects rely on
model-specific details. Direct comparisons can be made with several models which fall
within the class ofC-measure optimizations. (Mitchison (1991) also used optimization
arguments to address the formation of striped maps; however, the objective function used
in this case was quite different from theC-measure, and intracortical rather than afferent
projection patterns were optimized.)

The concern of Joneset al (1991) was to explain the overall directional flow of stripes
in the striate cortex. Formalizing an intuitive idea of LeVayet al (1985), they showed
that optimizing an objective function that attempts to keep neighbouring and corresponding
points in each eye nearby can reproduce some differences in the pattern between cats and
monkeys. The effect arises due to the different shapes of the primary visual cortex in each
case. Their formulation of this problem can be expressed as a maximization ofC when

F(i, j) =
{

1 i, j neighbouring, corresponding
0 otherwise

and

G(i, j) =
{

1 i, j first or second nearest neighbours
0 otherwise.



428 G J Goodhill

For two-dimensional retinae and cortex they found a solution such that ifF(i, j) = 1 then
G(M(i),M(j)) = 1, ∀i, j , which is achieved when stripes have a width of one†. The effect
on periodicity of varyingF andG was not investigated.

The elastic net, a low-dimensional feature space model originally formulated for the
travelling salesman problem (Durbin and Willshaw 1987), was first applied to the formation
of ocular dominance stripes by Goodhill and Willshaw (1990). Here, dissimilarities (not
similarities) are given by

F(i, j) =
{ |i − j |2 i, j in same eye
|i − j −N/2|2+ l2 i, j in different eyes

(7)

assuming that indices 1, . . . , N/2 give points in one eye and indicesN/2+ 1, . . . , N give
points in the other eye.l can be thought of as inversely related to the strength of between-eye
correlations (see Yuilleet al 1996 for discussion).G(i, j) is given by

G(i, j) =
{

1 i, j neighbouring
0 otherwise.

(8)

The globally optimal mapping (i.e. minimum ofC, sinceF now gives dissimilarities rather
than similarities) whenl > 1 is to keep the eyes entirely separate in the cortex, whereas for
l < 1 the globally optimal map is stripes of widthn = 2 (Goodhill and Willshaw 1990).
However, there is also a local minimum for a striped map, analogous to the present model,
where the interdigitations have widthn = 2l (Goodhill 1992). By varying the value ofl it is
thus possible to smoothly vary the periodicity of the locally optimal striped map. However,
an important difference with the present model is that in equation (7) the dissimilarities
increase without limit with distance, whereas in the present model the similarities tend to
zero with distance. Thus in the present model the extra cost of stripes one unit wider rapidly
becomes negligible, whereas for equation (7) this extra cost continues to increase by ever
larger amounts. Asn→∞, Cs(n) ∼ CA for the similarities defined in the present model
(i.e. there is the same cost for traversing the two blocks in the same direction as in the
opposite direction), whereas for the dissimilarities defined by equation (7) there is quite a
different cost in these two cases. ThatF andG should tend to a bounded value asi andj
become ever more distant neighbours is biologically more reasonable than that they should
be potentially unbounded. Dayan (1993) showed how to properly introduce neighbourhood
relations of more general form into the elastic net, and completely characterized stripe
width as a function of bothl and cortical interaction width. Although width was mostly
monotonic with these variables, non-monotonicity as a function of interaction width was
found for very high correlation. In the present model an insufficient number of values of
cortical interaction width were investigated to see such an effect if it exists; however, it is
interesting that increasing cortical interaction width can cause stripe width to both increase
and decrease in the elastic net model.

Luttrell’s (1990) quasi-objective function for the Kohonen (1982) algorithm can be
expressed in the present case using the sameF as for the elastic net, but with aG that is
a Gaussian function of distance in the cortex (Goodhill and Sejnowski 1997). However,
since the width ofG is usually continuously reduced during the simulation of the Kohonen
algorithm it is hard to determine how this width affects stripe periodicity.

Miller (1998) and Elliottet al (1998) have recently discussed an objective function for

† This was obtained by an exact optimization using an algorithm for subgraph isomorphism, which unfortunately
cannot be directly extended to the present model.
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models of neural development that has the form

E = −1

2

∑
x,y,α,β

S(x, α)I (x, y)C(α, β)S(y, β) (9)

wherex andy label neurons in an afferent space such as the retina or the LGN;α andβ label
neurons in a target space such as the cortex;I (x, y) gives the effective interaction between
target neuronsx and y; C(α, β) gives the correlation between afferent neuronsα andβ;
andS(x, α) andS(y, β) give the connection strengths between afferent and target neurons.
This same objective function is optimized by the models of both Milleret al (1989) and
Elliott et al (1996), though with differences in the form and interpretation of the terms in the
function, and the way in which constraints on the synaptic strength variables are enforced
(Miller 1998, Elliott et al 1998). When only one-to-one maps between input neurons and
target neurons are allowed, and there are assumed to be the same number of input and target
neurons, the minimization of equation (9) reduces to the maximization of theC-measure
(see Wiskott and Sejnowski (1998) for further discussion of the mathematical relationships
between different models). Ocular dominance stripe periodicity in the full Miller model is
determined by the peak of the power spectrum of the cortical interaction function, or the
afferent arbor diameter, whichever gives the smallest stripe width. Behaviour in the present
model appears quite different: stripe periodicity is finite even though cortical interactions are
all positive (so that the peak of the power spectrum is at zero), and stripe periodicity can be
greater than one even though the arbor width is effectively one. The latter is because, unlike
the Miller model, the present model allows flexibility in the topography of the mapping. In
Miller’s model corresponding points in each eye are restricted to the same small region of
the cortex; since every retinal point must possess territory in the cortex, stripes cannot be
wider than the width of this region.

5.3. Biological relevance

A striking feature of table 2 is how often a completely segregated map is the optimal
solution. This would appear somewhat problematic for a model purporting to account for
interdigitated stripes. However, the analysis and simulation results show that, even when
this is true, there is often also a local minimum for interdigitated stripes. In reality it is
likely that the overall topography of the V1 map is specified by molecular cues such as
gradients. Recent data from the retinotectal (Chenget al 1995, Drescheret al 1995) and
hippocampalseptal (Gaoet al 1996) systems show that gradients of receptors of the Eph
family are expressed in the input structure, while matching gradients of Eph ligands are
expressed in the output structure (for reviews see Friedman and O’Leary 1996, Flanagan
and Vanderhaeghen 1998). The interaction of these gradients during development may
subserve topographic map formation (e.g. Goodhill 1998), at least in a crude form. Later
activity then refines the map (reviewed in Udin and Fawcett 1988, Goodhill 1992). Such an
overall topographic bias would exclude completely segregated patterns, and favour instead
locally optimal striped patterns. This bias would be hard to include explicitly in the present
optimization model. In some models topography is hard-wired (e.g. Milleret al 1989),
whereas in others it emerges from the dynamics of the algorithm (e.g. Goodhill and Willshaw
1990).

The model presented here allows a more complete investigation of the interaction of
parameters determining stripe periodicity than is possible in other models. This leads to
some specific biological predictions, as follows:
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1. Decreasing correlation between the two eyes, as in strabismus or monocular deprivation,
(almost) always increases stripe width. This effect is also seen in several other models,
and thus constitutes a very robust theoretical result.

2. Increasing the width of lateral interactions in the cortex can cause both increases and
decreases in stripe width, depending on the other parameters. This contrasts surprisingly
with most previous models, which predict only increases in stripe width.

3. Increasing the spatial extent of within-eye correlations increases stripe width.

As discussed in section 1, there is already experimental evidence supporting prediction
1. The experimental data relating to prediction 2 are so far preliminary, consisting only of an
abstract (Hensch and Stryker 1996). The third prediction is not easy to test experimentally.
It would be hard to actually measure the value corresponding toσS in the retina or lateral
geniculate nucleus, and even harder to measureσD. A simpler approach would be to
compare stripe widths between dark-reared (DR), binocularly deprived (BD) and strabismic
kittens. In each case it should be true thatMD ≈ 0, leaving only the parametersσS andσC
in the model. It would be convenient to assume thatσC is the same in each of these three
cases so thatσS is the only varying parameter, but this may not be true ifσC is even partly
determined by activity-dependent mechanisms.σS is now determined by the characteristic
correlation width of spontaneous retinal activity in the DR case, by spontaneous activity
modulated by illumination through the eyelids in the BD case (see e.g. Krug and Thompson
1997), and by the statistics of natural scenes in the strabismic case. The model predicts that
stripe width may be different in these cases. Unfortunately it is not possible to be more
precise without knowing the actual values ofσS andσC . In addition, the effect of different
values ofσS between the three cases may be small. Since there is natural variability in
stripe width between different macaque monkey individuals (Horton and Hocking 1996b)
(though apparently less in the case of the cat (Löwel 1994)), it might therefore be difficult to
examine enough animals to produce statistics sufficient to definitively address this question,
unless for instance clones can be compared.
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