
LETTER Communicated by Herbert Levine

Optimality and Saturation in Axonal Chemotaxis

Jiajia Yuan
jiajia.yuan@uqconnect.edu.au
Stanley Chan
schan@physics.uq.edu.au
Duncan Mortimer
dmorti@gmail.com
Huyen Nguyen
huyen.vyvy@gmail.com
Queensland Brain Institute, University of Queensland, St. Lucia,
QLD 4072, Australia

Geoffrey J. Goodhill
g.goodhill@uq.edu.au
Queensland Brain Institute, University of Queensland, St. Lucia, and
School of Mathematics and Physics, QLD 4072, Australia

Chemotaxis (detecting and following chemical gradients) plays a crucial
role in the function of many biological systems. In particular, gradient
following by neuronal growth cones is important for the correct wiring
of the nervous system. There is increasing interest in the constraints that
determine how small chemotacting devices respond to gradients, but
little quantitative information is available in this regard for neuronal
growth cones. Mortimer et al. (2009) and Mortimer, Dayan, Burrage, and
Goodhill (2011) proposed a Bayesian ideal observer model that predicts
chemotactic performance for shallow gradients. Here we investigated two
important aspects of this model. First, we found by numerical simulation
that although the analytical predictions of the model assume shallow gra-
dients, these predictions remain remarkably robust to large deviations in
gradient steepness. Second, we found experimentally that the chemotac-
tic response increased linearly with gradient steepness for very shallow
gradients as predicted by the model; however, the response saturated for
steeper gradients. This saturation could be reproduced in simulations of
a growth rate modulation response mechanism. Together these results
illuminate the domain of validity of the Bayesian model and give further
insight into the biological mechanisms of axonal chemotaxis.
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1 Introduction

A large part of the computational power of biological nervous systems lies
in their intricate connectivity. During the development of complex nervous
systems, billions of nerve fibers (axons) must grow over potentially long
distances to find their appropriate targets. One of the crucial mechanisms
axons use to achieve this feat is guidance by chemical gradients. This is
an example of chemotaxis, and it is believed that axons may share many
features in this regard with other chemotacting systems at a similar scale
such as leukocytes and Dictyostelium (von Philipsborn & Bastmeyer, 2007;
Mortimer, Fothergill, Pujic, Richards, & Goodhill, 2008).

Gradients for axon guidance in vivo can be set up in a variety of ways,
including diffusion from the target tissue and differential expression on
the surfaces of cells over which the axons grow. Due to the very small
concentrations of guidance factors involved, it has seldom been possible
to obtain quantitative information regarding the shape of these gradients
in vivo (Kennedy, Wang, Marshall, & Tessier-Lavigne, 2006). However, it is
likely that both gradient steepness and concentration will vary considerably
between different guidance paths and also over the length of an individ-
ual path and that these variations will influence axon behavior (Isbister,
Mackenzie, To, & O’Connor, 2003; Legg & O’Connor, 2003; Mortimer, Pujic
et al., 2010; Thompson, Pujic, Richards, & Goodhill, 2011). It is thus impor-
tant to gain a more quantitative understanding of how gradient parameters
affect axonal growth.

At the most fundamental level, chemotaxis is limited by unavoidable
noise due to the limited number of individual ligand and receptor molecules
involved (Berg & Purcell, 1977; Bialek & Setayeshgar, 2005; Andrews &
Iglesias, 2007; Ueda & Shibata, 2007; Endres & Wingreen, 2008; Hu, Rappel,
& Levine, 2010). One source of such noise is that receptor binding is a
fundamentally stochastic process, so that determining gradient direction
is a form of reasoning under sensory uncertainty. Mortimer et al. (2009)
and Mortimer, Dayan, Burrage, and Goodhill (2011) analyzed this problem
using a Bayesian ideal observer approach. In particular, they calculated the
form of the posterior probability distribution for gradient direction, given
the binding state of a set of receptors spatially distributed over a small
chemotacting device and prior assumptions regarding the concentrations
and steepnesses likely to be encountered (see Figure 1A). Assuming shallow
gradients allowed a simple analytic form for the chemotactic performance
of such devices as a function of concentration and steepness to be derived.
In general this prediction matches well with quantitative measurements
of the behavior of axons (Mortimer et al., 2009; see Figures 1B, and 1C).
However, this work left two crucial questions regarding the model and real
axonal performance unanswered.

First, to derive a closed-form solution for the chemotactic performance
from the model, shallow gradients were assumed in terms of both the
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Figure 1: Summary of the Bayesian model of Mortimer et al. (2009, 2011) and
previous experimental work. (A) Receptors are assumed to be randomly dis-
tributed across a one-dimensional chemotactic sensing device. These receptors
are exposed to an external gradient, and the positions of bound receptors pro-
vide signals for the sensing device to decide the gradient direction. (B) Exper-
imentally measured chemotactic response (guidance ratio, GR) of dorsal root
ganglion explants for 38 different combinations of concentration and gradient
steepness. (C) Correlation of response predicted by the Bayesian model and
measured response across all gradients conditions (B, C replotted from Mor-
timer et al., 2009). (D) Closer examination of the response interpolated at 0.2 nM
for each gradient steepness suggests that response may not decline linearly
to zero as predicted by the Bayesian model: extrapolating a linear fit to zero
gradient steepness gives a nonzero GR.

gradients presented and the assumptions encoded in the prior distribu-
tions. It is thus unclear to what extent the analytic predictions are robust
to relaxing these shallow gradient assumptions. This is important because
gradients for axon guidance in vivo are expected to range from shallow to
steep. We therefore used numerical calculation based on the exact expres-
sion for the posterior distribution to determine chemotactic performance
in steep gradients and in a range of gradient steepnesses when the prior
expectation was steep gradients. Comparing these exact predictions with
the analytic expression derived from the shallow-gradient approximations,
we found that the analytical approximation is robust to such variations, and
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matches very closely with the exact solution across a wide range of gradient
parameters.

Second, the model predicts that chemotactic performance should scale
linearly with gradient steepness. Mortimer et al. (2009) tested four different
gradient steepnesses experimentally, and although the measured response
increased with gradient steepness, it appeared that the response might
be saturating at higher gradient steepnesses. In addition, it was unclear
whether, as predicted by the model, there was a smooth decline to zero
response as gradient steepness decreased to zero (see Figure 1D). However
due to the way in which these experiments were performed (see section 2), it
was hard to reach definitive conclusions on these points. We therefore con-
ducted more carefully controlled experiments to measure the precise form
of the relationship between gradient steepness and chemotactic response.
We found that under these conditions, the response did indeed decline lin-
early to zero with gradient steepness, arguing against the presence of an
absolute threshold in gradient steepness below which gradient detection is
impossible. However, for higher gradient steepnesses, the response clearly
saturated. A simple computational investigation revealed that a possible ex-
planation for this saturation lies in the mechanism by which axons respond
to shallow gradients.

2 Methods

2.1 Bayesian Model of Chemotaxis. We first briefly recapitulate the
model presented in Mortimer et al. (2009, 2011) for shallow gradients and
then present the generalization to steep gradients.

2.1.1 Shallow Gradient Model. We first briefly recapitulate the model pre-
sented in Mortimer et al. (2009, 2011; for further details see those papers).
We consider the simplified growth cone shown in Figure 1A, which consists
of a one-dimensional array of a uniformly distributed set of receptors. An
external ligand gradient is defined by

γ (r) = γ (0) × (1 + µr), (2.1)

where γ is concentration C divided by the dissociation constant KD, r is the
position x of the receptor divided by the growth cone’s diameter l, µ is the
dimensionless gradient steepness µ = 1

C(0)
dC
dx l, and C(0) is the concentration

at the center of the growth cone. Assuming that the probability of a receptor
being bound at this instant is γ /(1 + γ ), we have

P(B|γ , µ,R) = χ (B ⊂ R)
∏

r∈B

γ (1 + µr)
1 + γ (1 + µr)

∏

r∈R/B

1
1 + γ (1 + µr)

,

(2.2)
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where P(B|γ , µ,R) is the probability of observing the multiset B giving the
positions of the bound receptors, given γ , µ, and the multiset R giving the
positions of all receptors. χ (B ⊂ R) is one when B is a subset of R and zero
otherwise. This can be rewritten as

P(B|γ , µ,R) = χ (B ⊂ R)
γ n

(1 + γ )N

∏

r∈B

1 + µr
1 + µρr

∏

r∈R/B

1
1 + µρr

, (2.3)

where ρ = γ /(1 + γ ), n = |B| is the number of bound receptors and N = |R|
is the total number of receptors. If we now assume independence of γ , µ,
and R and that receptors are distributed independently and only bound
receptors contribute to the signaling, we can apply Bayes’ theorem and
marginalize over γ and R to obtain

P(µ|B) ∝ P(µ)

∫ ∞

0

∫
dγ P(γ )

γ n

(1 + γ )N P(R)χ (B ⊂ R)

×
∏

r∈B

1 + µr
1 + µρr

∏

r∈R/B

1
1 + µρr

dNR. (2.4)

Reexpressing the products in this expression as exponentials and assum-
ing that the gradient is sufficiently shallow that we can approximate the
resulting exponent to first order in µ, we obtain

P(µ|B) ∝ P(µ)

∫
dγ P(γ )

γ n

(1 + γ )N exp [(1 − ρ)µRb], (2.5)

where Rb =
∑

r∈B r. Assuming that the growth cone has a large number of
receptors, the integral over γ can be approximated by

P(µ|B) ∝ P(µ) exp [(1 − ρ̂)µRb], (2.6)

where ρ̂ is the a posteriori mean estimate for ρ assuming that no gradient
is present.

The best estimate for the gradient direction at this instant can now be
determined by comparing the probability that the gradient points to the
right against the probability that it points to the left:

$P = P(µ > 0|B) − P(µ < 0|B). (2.7)

If $P is less than zero, that indicates that it is more probable that µ is less
than zero, while if $P is greater than zero, it is more probable that µ is
greater than zero. If we assume that the growth cone is initially agnostic
about the direction of the gradient so that P(µ) is symmetric around µ = 0,
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then the sign of $P is entirely determined by the sign of (1 − ρ̂)Rb. The
growth cone’s optimal estimate for the sign of µ is thus

sign[(1 − ρ̂)Rb] = signRb. (2.8)

This corresponds to simply summing the positions of bound receptors rel-
ative to the center of the growth cone.

In order to estimate the performance of this strategy, we consider
Pcorrect (γ , µ), the probability that the strategy makes the correct decision
about the gradient direction for a given γ and µ. Pcorrect(γ , µ) can be ap-
proximated analytically (Mortimer et al., 2009).

Pcorrect(γ , µ) ≈ 1
2

erfc

(

−|µ|

√
N
24

γ

(1 + γ )3

)

≈ 1
2

+ |µ|
√

N
24π

√
ρ (1 − ρ) , (2.9)

where erfc is the complementary error function, from which we identify the
signal-to-noise ratio (SNR):

SNR ∝ |µ|
√

γ

(1 + γ )3 . (2.10)

Mortimer et al. (2009) showed that the SNR correlated well with the chemo-
tactic sensitivity of axons under a wide range of γ and small µ. Mortimer
et al. (2011) then extended the model to 2D and showed that the basic per-
formance characteristics of the model were unchanged between 1D and
2D. Time is not explicitly considered in this model; however, one could
imagine an additional simple temporal averaging process to gain better
statistics regarding the patterns of receptor binding. Mortimer, Dayan et al.
(2010) explicitly considered the temporal case, where information about the
dynamics of unbound-bound transitions is used directly.

2.1.2 Steep Gradient Model. For shallow gradients, it is reasonable to
approximate the gradient as linear across the receptor array. However, this
assumption fails for steep gradients as it can potentially lead to negative
concentrations at the low-concentration end of the array. We therefore avoid
this problem for steep gradients by assuming an exponential gradient:

γ (r) = γ exp(µr). (2.11)

As in the shallow gradient case, the optimal estimate of the gradient direc-
tion is determined by

$P = P(µ > 0|B) − P(µ < 0|B). (2.12)
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However, in this case, we cannot obtain a simple analytic expression for
sign($P). Rather, we must evaluate P(µ > 0|B) and P(µ < 0|B) numeri-
cally. We have

P(µ > 0|B)=V
∫ ∞

0
dµP(µ)

∫ ∞

0
dγ P(γ )

∫
dNRP(R)χ (B ⊂ R)

×
∏

r∈B

γ exp(µr)
1 + γ exp(µr)

∏

r∈R/B

1
1 + γ exp(µr)

,

=V
∫ ∞

0
dµP(µ)

∫ ∞

0
dγ P(γ )

∏

r∈B

γ exp(µr)
1+γ exp(µr)

∫
dN−nUP(U )

×
∏

r∈U

1
1 + γ exp(µr)

, (2.13)

where we have used the fact that the positions of the bound receptors
are known to partially evaluate the integral over R and V is an unknown
normalizing constant. A similar expression is obtained for the integral over
negative values of µ.

In order to estimate the performance of the decision strategy for a given
γ and µ, we generated 1000 different receptor binding configurations and
for each configuration evaluated the µ > 0 and µ < 0 integrals numerically.
Specifically, for each binding distribution, we generated five runs of 10,000
samples using the Metropolis-Hastings algorithm, discarding the first 1500
samples in order to remove bias due to the seed for the run (µ = 0, log γ = 0
in each case). For each binding configuration and for each Metropolis-
Hastings run, we estimated $P by subtracting the fraction of samples for
which µ < 0 from the fraction of samples for which µ > 0. Our performance
estimate for a given γ and µ was then taken to be 2q − 1, where q was the
proportion of the 1000 binding configurations for which the sign of $P was
the same as that of the gradient (since q = 0.5 corresponds to a chance level
of performance).

We assumed flat priors for P(R) and P(γ )—that receptors are distributed
uniform randomly across the growth cone and that the growth cone has no
prior expectation as to the concentrations it will encounter. For P(µ), we
considered two cases. First, we assumed a gaussian probability centered on
steepness 0, where the variance represents the range of steepness the growth
cone is expecting. We investigated variances from 0.1 (corresponding to
≈3% change in concentration across the array) to 10 (i.e., ≈300% change in
concentration across the array). Second, we considered a sum of two equal
gaussians centered at steepness ±0.5 (i.e., a 50% change in concentration
across the array) with variance 0.01. This corresponds to an expectation
on the part of the growth cone that the steepness will be close to 50%.
However, we show in section 3 that the chemotactic sensitivity predicted
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by the Bayesian model is quite insensitive to these assumptions except in
extreme cases.

2.2 Experiments

2.2.1 Overview. Gradients of nerve growth factor (NGF) were produced
in three-dimensional collagen gels in a manner similar to that previously
described (Rosoff, McAllister, Esrick, Goodhill, & Urbach, 2005; Mortimer
et al., 2009; Vetter, Pujic, & Goodhill, 2010). Briefly, a Gesim nanoplotter
was used to print precisely controlled volumes of NGF stock solution in a
grid pattern on the surface of the gel. Rosoff et al. (2005) showed that these
spots diffuse into the collagen, creating a gradient that remains relatively
stable for many hours. Explants of early postnatal rat dorsal root ganglia
(DRGs) were embedded in the collagen prior to gradient printing and then
allowed to grow for 40 hours in the NGF gradient. At the end of this
time, response to the gradient was measured by comparing the number
of pixels representing neurite growth up the gradient compared to neurite
growth down the gradient as described in Mortimer et al. (2009). This
yielded a guidance ratio (GR) that is zero for radially symmetric neurite
outgrowth, with increasingly positive values representing an increasingly
strong response to the gradient.

2.2.2 Modifications from Previous Work. Following the study presented
in Mortimer et al. (2009), we identified several ways to potentially reduce
the variability in these types of experiments. First, our subsequent work
revealed that DRGs from different spinal levels show different degrees of
response to the same NGF gradients (Vetter et al., 2010). For this work, we
therefore used DRGs only from the lumbar region rather than from lumbar
and thoracic regions mixed together, as in Mortimer et al. (2009). Second,
expression of the NGF receptor TrkA is known to change with age (Phillips
& Armanini, 1996; Molliver & Snider, 1997), and we therefore used a nar-
rower range of ages of rat pups—postnatal day 0 to 1 (P0-P1), as compared
to P0-P3 in Mortimer et al. (2009). Third, we printed gradients consisting
of 16 lines of different concentrations of NGF rather than 12 lines plus 4
plateau lines as in Mortimer et al. (2009), which leads to greater stability of
the gradient. Fourth, Mortimer et al. (2009) showed by finite element mod-
eling that the parameters of the gradient in the gel do not exactly reflect
the parameters of the gradient produced in the collagen. While Mortimer
et al. (2009) applied correction factors to take this into account, this had the
consequence that the response to different gradient steepnesses was never
compared for exactly the same concentration. In this work, we applied
analogous correction factors directly to the gradient printing, ensuring that
the same concentration was produced at the position of the explants for
each gradient steepness. Finally, the experiments in Mortimer et al. (2009)
were performed by several different people, introducing some inevitable
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variability in tissue preparation. Here only one person (J.Y.) performed the
experiments.

2.2.3 Detailed Methods. All experiments were approved by the Univer-
sity of Queensland Animal Ethics Committee. DRGs were dissected and
trimmed from the lumbar regions of P0–P1 Wistar rat pups, and stored
in Hibernate E (Brainbits) at 4◦C overnight. The next day, the DRGs were
incubated in 5 ml Hanks balanced salt solution with 0.25% trypsin at 37◦C
for 6 minutes to remove the outer capsule. Then 20 ml of Leibvitz with 1%
glucose was added to halt the enzyme activity. After removing liquid, the
process was repeated twice. Six explants in a row were then embedded in a
thin layer of collagen gel in the middle of a 35 mm tissue culture dish. The
collagen gel contained 0.2 mg/ml collagen, 1× optimem, 1 mg/ml sodium
bicarbonate, and 1× antibiotic-antimycotic (Invitrogen).

A Gesim nanoplotter 2.0 was then used to “print” the desired gradient of
NGF (Biosensis). Sixteen NGF stock solutions with exponentially increasing
NGF concentration were deposited on the surface of the collagen gels in the
form of 16 parallel lines, with the explants located between the eighth and
nineth lines. Three dishes were printed in parallel. The concentration and
gradient steepness were chosen such that after the application of correction
factors analogous to those in Mortimer et al. (2009), gradients were pro-
duced with a final concentration 0.2 nM at the explants, with steepnesses
of 0.0%, 0.03%, 0.06%, 0.09%, 0.12%, 0.15%, 0.18%, 0.21%, and 0.24% frac-
tional change across 10 microns, the approximate width of a DRG growth
cone. After printing, dishes were incubated at 37◦C with 5%CO2 for
40 hours.

Explants were fixed with 10% formaldehyde 0.1% Triton X-100 in phos-
phate buffered solution (PBS) overnight. The dishes were washed 6 times
with PBS at 1 hour intervals, and then the neuronal tubulin antibody TUJ1
(1µg/ml) was added and the dishes left overnight. Following five washes
with PBS for 1 hour each, the dishes were left overnight in the secondary
antibody Alexa Fluor 488-conjugated goat antimouse IgG (1:1000). After
another five washes the next day, explants were photographed with an
AxioCam HRm camera on a Zeiss Image Z1 fluorescence microscope. After
manually masking the explant in the resulting image file, we used custom
Matlab code to trace the neurites in each image. We identified the centroid
of the explant body and then counted the number of neurite pixels on the
up- and down-gradient sides of this center point. Outgrowth asymmetry
was quantified using the guidance ratio GR = (H − L)/(H + L), where H
and L are the number of neurite pixels on the high and low NGF concen-
tration sides of the explant, respectively. As Mortimer, Pujic, et al. (2010)
explained, there was no obvious turning of neurites; therefore, the readout
of chemotactic response was the asymmetry of growth up versus down the
gradient.
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The experiments were conducted in two groups: first steepnesses 0.03%
to 0.12% and then steepnesses 0.15% to 0.24%, each with its own 0% control.
For the first group, we found a small negative offset to the GR in the control
condition of −0.025 (compared to typical values of ≈ 0.1 for robust guidance
responses). However, for the second group of experiments, we turned the
dishes by 90 degrees on the nanoplotter and printed the NGF lines in a
similarly rotated direction. In this case, the GR in the control condition fell
to −0.007. To match the results from the two groups, we therefore added the
negative offset value of the relevant control group to all the GRs obtained,
so that the GR in the control conditions was exactly zero. The experiments
of Mortimer et al. (2009) also showed a slight negative offset in the control
condition of ≈ −0.01, which was not corrected for in that work. We do
not currently understand the reason for this small effect on the GR of the
orientation of the dishes on the nanoplotter. One possibility is that there
could perhaps have been a small electrical potential gradient present in the
nanoplotter for the current experiments that also affected neurite growth
by galvanotaxis (McCaig, 1986).

3 Results

3.1 Chemotactic Sensitivity Predictions for Steep Gradients. Mor-
timer et al. (2009) showed previously that the analytical approximation for
chemotactic performance derived assuming shallow gradients fit well with
experimental measurements of the chemotactic sensitivity of axons using
shallow gradients. We now tested how well this analytical approximation
matches the behavior of the full model under less restrictive conditions
regarding gradient steepness.

First, we compared the analytical approximation with the numerically
simulated results over a wide range of steepnesses and concentrations for
three different variances σ 2 of the prior distribution over gradient steep-
nesses (see Figure 2). There was generally a very good fit between the ana-
lytical approximation and simulated results, even for gradient steepnesses
and prior distributions well outside the expected range of validity of the
analytical approximation. A slight difference did occur for high steepnesses
at high concentrations, where the analytical approximation slightly overes-
timated the chemotactic performance. However, in general, the analytical
prediction is surprisingly robust.

This comparison was of performance averaged over many different re-
ceptor distributions. We therefore next compared the analytical and sim-
ulated results for exactly the same receptor distributions (see Figures 3A
to 3C). In particular, we defined the common decision fraction as the ra-
tio of times in each condition that the shallow gradient and estimated
Bayes-optimal predictions were the same. At least in the middle range
of concentrations (10−2 ≤ γ ≤ 101), there was close to perfect agreement
for the larger variances in the gradient-steepness prior (σ 2 = 0.1, 1.0, 10.0).
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Figure 2: Comparison of the Monte Carlo estimation for the performance of
the optimal strategy to the analytic approximation for the performance of the
shallow gradient strategy. (A, C, E) Chemotactic sensitivity as a function of
concentration for P(µ). (A) P(µ) normally distributed with variance σ 2 = 0.01.
(C) P(µ) normally distributed with variance σ 2 = 1.0. (E) P(µ) an equal mix-
ture of normal distributions at µ = ±0.5, each with variance σ 2 = 0.01. In each
case, curves are shown for four different values of µ, the actual gradient steep-
ness presented. The curves were calculated analytically using the shallow gra-
dient approximation for $P. For each gradient steepness and concentration,
1000 binding distributions were generated, and for each such distribution, $P
was calculated using five independent Markov chain Monte Carlo runs (see
section 2). Each data point shows the result of one such run, with error bars
shown according to the expected standard error in the mean assuming calcu-
lated $P was correct. Data points in panels A, C, and E are horizontally offset
for visibility; in each case, the center point is at the true concentration value.
Panel F illustrates that there is no apparent systematic dependence of $P on the
prior distibution for µ.
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Figure 3: Difference in decision making between the analytic shallow-gradient
strategy and the estimated Bayes-optimal strategy. (A) Common decision frac-
tion between the shallow gradient and estimated Bayes optimal strategies as
a function of concentration γ . The different curves show different values for
the variance σ 2 of the prior gradient steepness distribution. The actual gradient
steepness presented in each case was µ = 0.01. There is a drop in similarity of
decision making at high and low concentrations and noticeably less agreement
for the gradient steepness prior with the smallest variance (σ 2 = 0.01). Panels B
and C compare Rb (i.e., the sum of the positions of the bound receptors, which
determines the shallow gradient strategy) to the corresponding Markov chain
Monte Carlo estimate of $P for 1000 different sets of receptor positions for
(B) γ = 1 and (C) γ = 1000, with σ 2 = 0.01, σ 2 = 10.0. (D) Common decision
fraction as a function of µ for γ = 1, 10, 100, with the mixed prior in Figure 2D.
The common decision ratio is close to one for γ = 1 but drops for higher γ .
However, for each γ , the common decision ratio is largely independent of the
gradient steepness µ, even when µ differs substantially from µ = 0.5, the steep-
ness expected according to the prior distribution.

Counterintuitively, agreement between the strategies was lower for the
smallest variance in the gradient-steepness prior (σ 2 = 0.01; Figure 3A).
One would expect that when the prior gradient steepness was concen-
trated closer to the origin, the full Bayesian strategy and approximate
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shallow-gradient strategy would agree more closely. Figures 3B and 3C
plot the Monte Carlo estimate of $P against Rb and illustrate why this
reduction in agreement occurs. When the signs of these quantities are the
same, the shallow-gradient strategy and estimated optimal strategy agree.
It is evident in these plots that for smaller values of σ 2, the slope of the $P
versus Rb line also decreases near Rb = 0. For extremely shallow gradients,
the binding probability on the growth cone is essentially uniform, and mea-
suring the difference in binding probability by Monte Carlo simulations can
become a very noisy process. This means that for lower values of σ 2, there
are comparatively more cases in which Rb and the estimate of $P differ in
sign. For extreme values of γ (see Figure 3C), the slope of the $P versus Rb
line is even further reduced, magnifying this effect.

Next, we investigated the case when the expected magnitude of P(µ) is
no longer centered at zero, that is, the growth cone is expecting gradients
of a specific steepness. In particular we now took P(µ) to be the sum of two
gaussians centered at ±0.5 with variance 0.01 (see Figure 3D). For γ = 1,
the common decision fraction was close to unity over a range of µ, though
again this fraction dropped as γ increased beyond 1.

The surprising agreement in performance between the first-order ap-
proximation and the full calculation can be explained by noticing that even
without the shallow gradient approximation, the term $P almost always
has the same sign as Rb, except for extreme values of γ or µ. For any value
of the gradient steepness, we can expand the expectation value of Rb, E[Rb],
as follows:

E[Rb] = E

[
n∑

i=1

ribi

]

= NE [rE[b]] = NE
[

r
γ exp(µr)

1 + γ exp(µr)

]
(3.1)

= NE

[
rγ

γ + 1
+ µγ r2

(γ + 1)2 + µ2γ (1 − γ )r3

2(γ + 1)3

+ µ3γ (γ 2 − 4γ + 1)r4

6(γ + 1)4 + . . .

]

. (3.2)

Since we have assumed P(r) to be a uniform distribution between [−1/2;
1/2], in the expression above, all the terms containing an odd function
of r will disappear after the integration. Meanwhile, the higher even-order
moments of r become increasingly small (E[r2] = 1/12, E[r4] = 1/80, E[r6] =
1/448), and in practice, µ is unlikely to be larger than 1 (corresponding to a
doubling in concentration over 10 microns). Therefore, we can ignore any
terms higher than the second order of r, yielding

E[Rb] ≈ NE
[

rγ
γ + 1

]
. (3.3)
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Similarly, the variance can be approximated as

Var[Rb] ≈ γ

γ + 1
NE[r2]. (3.4)

We can then approximate the performance as

$P ≈ sign(µ)erf

(
E[Rb]

√
2Var[Rb]

)

(3.5)

≈ |µ|
√

N
6π

√
γ

(γ + 1)3 (3.6)

and thus

Pcorrect ≈ 1
2

(1 + $P) = 1
2

+ µ

√
N

24π

√
γ

(γ + 1)3 . (3.7)

This analysis in the general case leads to the same formula for the perfor-
mance as the first order approximation in equation 2.9, thus explaining the
robustness of the analytically derived SNR expression. It is also evident that
when µ is extremely shallow, or γ too high or too low, the SNR becomes
very small. The Monte Carlo computation of the probability difference then
shows large fluctuations, leading to the poor agreement between Rb and
$P as demonstrated above.

3.2 Measured Variation in Response with Gradient Steepness. The
theoretically derived chemotactic sensitivity (see equation 2.9) predicts that
the chemotactic response should decline linearly to zero with gradient
steepness. However, this prediction has not yet been explicitly tested exper-
imentally, and previous data hinted that there could instead be a threshold
gradient steepness below which the response drops to zero (see Figure 1D).
To investigate the variation in guidance response with gradient steepness,
rat DRGs were grown in precisely controlled gradients of NGF with a con-
centration of 0.2 nM at the explants and steepnesses varying from 0 to
0.24% change in concentration per 10 microns, using more controlled con-
ditions than in previous work (see section 3). Typical explants are shown in
Figures 4A and 4B. Total neurite outgrowth from the explants was roughly
constant across different gradient steepnesses (see Figure 4C). The overall
variation in chemotactic response (measured by the guidance ratio, GR; see
section 3) with steepness is shown in Figure 4D. Also shown for comparison
is the roughly corresponding data from Mortimer et al. (2009). The response
first increases roughly linearly with gradient steepness, agreeing with the
prediction of the Bayesian model. In particular there was no indication of a
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Figure 4: Experimental analysis of decline in chemotactic response with gradi-
ent steepness. (A, B) Example DRG explants after two days of growth in precisely
controlled NGF gradients (concentration increasing upward). (A) GR = 0.0.
(B) GR = 0.1 (scale bar = 500 µm). (C) There is little variation in total neurite
outgrowth with gradient steepness. The experiments were performed in two
groups at different times (0.03%–0.12% and 0.15%–0.24%, defined as fractional
change over 10 microns), which accounts for the small difference between these
two groups. (D) The GR increases linearly with gradient steepness and then
saturates. n = 40–83 explants per condition. p-values compared to control are
0.1 (0.03%) and 0.001 (0.06%), and the p value for 0.03% compared to 0.06% is
0.04 (one-tailed t-tests). p values for all other conditions compared to control are
less than 0.004, except for 0.21%, which is 0.024. Also plotted are the roughly
corresponding data points from the study of Mortimer et al. (2009). The corre-
spondence is only approximate since none of the data points in Mortimer et al.
(2009) were at exactly 0.2 nM.

threshold. Beyond a steepness of ≈0.1%, however, the response saturated
and did not increase with steepness.

Why does this saturation occur? One potential explanation is that in
a gradient steepness of ≈0.1% over 10 microns, all axons are making
guidance decisions with close to 100% fidelity, so that increases in gra-
dient steepness confer no further improvement. This initially appears im-
plausible due to the tiny change in concentration, and thus high noise in
measurement, that exists across the width of a growth cone in a 0.1% gra-
dient. However, recent evidence (Mortimer, Pujic, et al., 2010; Thompson
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et al., 2011) suggests that the way in which axons convert a graded pattern
of receptor binding into directed movement is fundamentally different in
shallow gradients as compared to steep gradients (e.g., ≈10% across 10 mi-
crons, as exists in the standard growth cone turning assay (Zheng, Felder,
Conner, & Poo, 1994; Song, Ming, & Poo, 1997). In particular, axons turn
in steep gradients, but in shallow gradients they modulate their growth
rate so that they move faster when pointed up the gradient than down
the gradient (Mortimer, Pujic, et al., 2010). Turning requires a comparison
of concentrations across the width of the growth cone, while growth rate
modulation requires a comparison between the tip of the axon and some
point farther down the axon shaft, potentially much farther than the width
of a growth cone, leading to a more reliable decision. Furthermore the
two-day timescale of our experiments allows multiple measurements to be
averaged, again increasing the reliability.

To investigate further the plausibility of this as an explanation for satu-
ration, we simulated axonal growth, from explants using a simple growth
rate modulation model similar to that of Mortimer, Pujic, et al. (2010), where
neurites were able to compare concentrations along their entire length. In
particular, we assumed that the amount grown at each time step by each
neurite is slightly larger (smaller) when it has decided (based on the pattern
of bound receptors along its length) that it is growing up (down) the gra-
dient. The percentage change in concentration along the length of a neurite
is then of order 10%, which, combined with the large number of receptors,
potentially available, leads to highly reliable measurements. However, we
assume that changes in growth rate are nonetheless constrained by the lim-
ited resources for growth available to the neurite. As in Mortimer, Pujic, et al.
(2010) neurites also made a small turn at each time step, but the direction
of this turn was random. Figure 5 shows plots of the guidance ratio ver-
sus gradient steepness and guidance ratio versus concentration for these
simulations, which match those seen experimentally. Although this does
not of course definitively establish that this is the mechanism underlying
saturation in our experiments, it provides at least one possible explanation.

4 Discussion

By extending the previous theoretical and experimental work of Mortimer
et al. (2009, 2011), and Mortimer, Pujic, et al. (2010), we have shown that
the optimal strategy for chemotaxis approximated for shallow gradients
remains valid for very steep gradients, that the predicted linear increase
in chemotactic response with concentration matches with the behavior of
real neurites, that the chemotactic response saturates rapidly with gradient
steepness in our shallow-gradient assay, and that this saturation can be
explained within the context of a growth rate modulation model of the
chemotactic response.
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Figure 5: Modeling saturation. (A) Guidance ratio of 100 simulated explants
per condition as a function of gradient steepness (γ = 1), showing saturation
similar to that we observed experimentally. Neurites responded to the gradient
by growth rate modulation. (B) Guidance ratio as a function of concentration for
the same model (steepness = 0.14%), reproducing the general shape measured
in Mortimer et al. (2009).

An interesting consequence of the robustness of our Bayesian frame-
work to (symmetric) variations in the priors is that this implies that similar
results would be obtained from a maximum likelihood (ML) approach. In
recent work, Hu, Chen, Rappel, and Levine (2011) combined ML with an
information-theoretic framework to derive estimates for the accuracy of
gradient sensing. This yielded a formula for the SNR very similar to our
equation 2.10:

SNR ≈ µ

√
Nγ

8(γ + 1)2 ,

though this result was not compared to experimental data. Working within
the full Bayesian framework maintains the generality required to investigate
situations in which the growth cone has a biased (asymmetric) expectation
for the gradient, as Hu et al. (2011) have also explored.

It is remarkable that the approximation to the performance (see
equation 2.9) derived for shallow gradients is almost indistinguishable from
the performance of the Monte Carlo estimation of the exact Bayesian strat-
egy, even at very high gradient steepnesses and for prior distributions of
the gradient steepness incorporating steep gradients (see Figures 2C and
2E). In the model we used, background concentration was defined to be the
concentration at the center of the growth cone and was assumed to vary
exponentially across the width of the growth cone. However, one could
imagine alternative formulations consistent with a linear gradient at low



850 J. Yuan et al.

steepnesses. For example, we could instead consider a more or less sharp
boundary between two different concentrations, with a linear transition
region (with the boundary not necessarily occurring at x = 0). Such a situ-
ation might be more appropriate for modeling a growth cone’s response to
short-range or contact-mediated guidance cues. In this case, a steep gradi-
ent would correspond to a very sharp boundary, while a shallow gradient
would be associated with a gradual transition from low to high concentra-
tion (perhaps over a distance larger than that of the growth cone width).
We would still expect the shallow gradient strategy to correspond to that
derived in Mortimer et al (2009, 2011); however, in steep gradients, the
growth cone might perform better by searching for a sharp transition in the
density of receptor binding.

At low concentrations and high gradient steepnesses, we did observe
slightly lower performance than that predicted by equation 2.9. This obser-
vation can be explained by noting that equation 2.9 is valid only when a
sufficiently large number of receptors are bound for the central limit theo-
rem to hold. This assumption begins to break down at low concentrations.
In particular, equation 2.9 then tends to understimate the level of noise in
the growth cone’s estimate of the gradient direction.

While our experimental confirmation of a linear decline in the chemo-
tactic response as the gradient steepness decreased to zero provides further
support for the Bayesian model, it does not strongly privilege the Bayesian
explanation over other models, since presumably some alternative models
would also predict (at least approximately) a linear relationship for very
low steepness. The more interesting finding from a biological perspective is
the apparent lack of an absolute threshold below which gradient detection
is impossible, which could have been an alternative outcome of the experi-
ment. This suggests that at least at a concentration of roughly KD, there is no
step in the signaling cascade that has a fixed absolute threshold. However,
our data could still be consistent with absolute thresholds that vary between
different neurites: since our measure of chemotactic response averages over
many neurites, the smooth decline to zero could represent the combined
effect of many all-or-nothing switches if these thresholds vary across the
neurite population. Although the response we measured for a 0.03% gradi-
ent is close to exactly half that of a 0.06% gradient, the p-value for the 0.03%
gradient response is only 0.1 compared to control. Thus, it is still possible
that a sharp threshold might exist somewhere below 0.06% steepness. This
issue is discussed in more detail in Fuller, Chen, Adler, Groisman, Levine,
and Rappel (2010), where the authors compute the mutual information be-
tween the gradient and the spatial distribution of bound receptors and the
mutual information between the input gradient and the motility direction
of a chemotacting cell. They suggest that for shallow gradients, the informa-
tion loss due to downstream signaling is insignificant. One way a threshold
could potentially arise in our model is due to the finite precision with which
a growth cone could know the positions of bound receptors. Unfortunately,
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given the high degree of natural variability displayed in the responses, the
n-values required to investigate this would be extremely large. An addi-
tional possibility is that a threshold could appear if the growth cone were
compelled to make a decision regarding gradient direction on a significantly
shorter timescale than that of the experimental assay used here.

One possibility for the saturation we observed is that only a subset of neu-
rites is competent to respond to the gradient (i.e., express the NGF receptor
TrkA). TrkA receptor levels are known to decline with age in embryonic and
early postnatal rats (Phillips & Armanini, 1996; Molliver & Snider, 1997),
and at the age of the rats we used for these experiments, only about 40% of
neurites express TrkA (though it is possible that in our cultures, non-TrkA
positive neurons will already have died after 2 days in vitro due to a lack
of trophic support). Thus, if 60% of neurites are unaffected by the gradient,
one would expect that the GR could not exceed a certain level, even if the
remaining 40% of neurites all grew straight up the gradient. However, sim-
ulation results based on the neurite growth models of Xu, Rosoff, Urbach,
and Goodhill (2005) and Mortimer, Pujic, et al. (2010) suggest that the upper
bound on GR this implies is much larger than that observed experimentally
(data not shown). Instead, here we showed that saturation could naturally
arise from the assumption that gradient detection on a scale of an entire neu-
rite, as might occur in a growth rate modulation mechanisms (Mortimer,
Pujic, et al., 2010), leads to high gradient detection fidelity even in shallow
gradients. One potential experimental test would be to grow neurites in
compartmentalized cultures. Here the cell body is maintained at a different
ligand concentration from the growth cone, producing a step-like gradient,
which could potentially modulate neurite growth rate depending on the
magnitude of the concentration difference between the two compartments.

However, to more thoroughly address these questions requires new in
vitro technologies for examining the long-term growth of neurites, both
dissociated and in the form of explants, in gradients that can be varied in
steepness over a broad range and precisely controlled for long periods of
time. While technologies satisfying all these constraints do not currently
exist, a promising possible direction is microfluidics (Whitesides, 2006). Al-
though a number of microfluidic approaches have been developed for cells
in general (reviewed in Kim, Kim, & Jeon, 2010), the delicacy of neurons, and
especially their growth cones, provides a particular challenge (Wang et al.,
2008; Bhattacharjee, Li, Keenan, & Folch, 2010). However, these types of
new technologies, combined with theories such as we have presented here,
have the potential to greatly increase our understanding of axon guidance
by gradients in vitro and ultimately also in vivo.
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